عدد رمزی گراف های چگال
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
- author حمید جمالی به جو
- adviser غلام رضا امیدی اردلی بهناز عمومی
- Number of pages: First 15 pages
- publication year 1392
abstract
نظریه ی رمزی بخشی از گرایش ترکیبیات می باشد. این نظریه برای اولین بار توسط فرانک رمزی ریاضی دان انگلیسی در سال 1930 مطرح گردید. در این نظریه به مطالعه ی وجود ساختارهای مشخص در گراف های با تعداد رئوس بالا پرداخته می شود. عدد رمزی برای گراف عبارت است کوچکترین عدد صحیح مثبتی که بتوان در هر دو رنگ امیزی دلخواه از گراف کاملی با آن تعداد رأس بتوان گراف تک رنگ مد نظر را پیدا کرد.
similar resources
بررسی عدد رمزی ابرگراف ها
در این پایان نامه به مطالعه یکی از نظریه های جذاب صد سال اخیر ریاضی بنام نظریه رمزی می پردازیم. به بیان دقیق تر در این پایان نامه، به بیان صورتهای مختلفی از قضیه ای موسوم به قضیه رمزی که خود تعمیمی از اصل لانه کبوتری است پرداخته و از آن عددی موسوم به عدد رمزی را برای گرافها و ابرگرافها تعریف می کنیم. بیان برخی از نتایج شناخته شده در این مورد کار بعدی ما است. در فصل آخر نیز به اثبات مقدار دقیق...
عدد رمزی ابرگراف های k-یکنواخت
ابرگراف کامل k-یکنواخت k_n^k متشکل از مجموعه ای n رأسی است که شامل تمامیk-تایی ها است. کوچکترین عدد صحیح مثبت n که در هر رنگ آمیزی دلخواه ازk -تایی های مجموعه ی [n]، با رنگ های قرمز و آبی، بتوان کپی k_s^k قرمز یا k_n^k آبی در آن یافت، عدد رمزی r_k (s,n) می نامیم. محاسبه ی اعداد رمزی از پیچیدگی بالایی برخوردار است، از همین رو روند بهبود کران های اعداد رمزی و نتایج حاصل از آن ها همواره ...
15 صفحه اولاعداد رمزی گراف کامل - دور
و g? فارگ ود یارب .تساهفارگ یزمر دادعا هعلاطم ،فارگ ه?رظن رد مهم تاعوضوم زا ?ک? لماش g فارگ ،n یهبترم زا g فارگ ره یارب هک تسا یاn ن?رتکچوک ،r(g?, g?) یزمر ددع g? ی هبترم زا لماک فارگ ار kn و m لوط هب یرود ار cm .دشاب g? لماش ،g لمکم ،g¯ ا? و g? فارگ .تسا r(cm , kn ) یزمر ددع یهعلاطم همان نا?اپ ن?ا ?لصا یهلأسم ،م?ر?گ?م رظن رد n .r(cm , kn ) ? (m ? ?)(n ? ?) + ? ن?اربانب تسا kn دقاف g¯ و cm رود...
عدد همسایگی یک گراف
مجموعه s از رئوس گراف g را مجموعه همسایگی گراف g می نامند اگر g = u ??s ?n (?)? که ?n(?)? زیر گرافی از g است که توسط راس ? و همه روس مجاور با ? القا می شود. عدد همسایگی برای گراف g مینیمم اندازه مجموعه های همسایگی g است. این پارامتر در سال 1985 توسط e.sampathkumar و prabha s.neeralagi معرفی شده است. و در سال 1990 توسط p.p.kale و n.v.deshpande [5] کران های جدیدی برای این پارامتر ارائه شده است و ...
15 صفحه اولعدد تعیین کننده در گراف های خاص
در تعیین عدد تعیین کننده در رنگ آمیزی رأسی یک گراف، هدف یافتن کمترین تعداد رأس است، طوریکه رأس های باقیمانده با ترتیبی خاص به اجبار رنگ بگیرند. با توجه به گسترده و متنوع بودن انواع گراف ها در این پایان نامه عدد تعیین کننده را در برخی از گراف های خاص مانند: گراف های هرری، حاصلضرب، منتظم، میشل اسکی، چرخشی و تقسیم بررسی می کنیم. در پایان، رنگ آمیزی جدید به نام رنگ آمیزی ستاره ای ارائه و عدد رنگی...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023